
1. Introduction
The ocean's net uptake of CO2 is a key component of the global carbon cycle. Quantifying how anthropogenic 
emissions are distributed between atmosphere, land biosphere, and ocean reservoirs with as low uncertainty 
as possible is needed to support international climate policy (Peters et al., 2017). The Global Carbon Budget 
2020 (Friedlingstein et  al.,  2020) finds that for 2009–2018, the ocean sink for anthropogenic carbon was 
−2.5 ± 0.6 PgC/yr (negative flux into the ocean), based on global ocean biogeochemical models (GOBMs). 
However, four observation-based products suggest a trend diverging from the GOBMs over this period and a sink 
that is 0.4 PgC/yr larger (Hauck et al., 2020). Do the relatively new observation-based estimates indicate an issue 
with the long-used GOBMs?

Estimating the global ocean CO2 sink requires knowledge of ocean partial pressure of CO2 (pCO2). The Surface 
Ocean CO2 ATlas (SOCAT) is an annually compiled database of surface ocean fugacity of CO2 (fCO2) with over 
28.2 million observations for 1957–2019 in the SOCATv2020 release (Bakker et al., 2016), mainly from volun-
teer observing ships. fCO2 is nearly equivalent to pCO2, different by a 0.3% non-ideality correction; we make 
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(GOBMs) and observational-based data products. GOBMs are internally consistent, mechanistic representations 
of the ocean circulation and carbon cycle, and have long been the standard for making spatio-temporally 
resolved estimates of air-sea CO2 fluxes. However, there are concerns about the fidelity of GOBM flux 
estimates. Observation-based products have the strength of being data-based, but the underlying data are sparse 
and require significant extrapolation to create global full-coverage flux estimates. The Lamont Doherty Earth 
Observatory-Hybrid Physics Data (LDEO-HPD) pCO2 product is a new approach to estimating the temporal 
evolution of surface ocean pCO2 and air-sea CO2 exchange. LDEO-HPD uses machine learning to merge high-
quality observations with state-of-the-art GOBMs. We train an eXtreme Gradient Boosting (XGB) algorithm 
to learn a non-linear relationship between model-data mismatch and observed predictors. GOBM fields are 
then corrected with the predicted model-data misfit to estimate real-world pCO2 for 1982–2018. The resulting 
reconstruction by LDEO-HPD is in better agreement with independent pCO2 observations than other currently 
available observation-based products. Within uncertainties, LDEO-HPD global ocean uptake of CO2 agrees 
with other products and the Global Carbon Budget 2020.

Plain Language Summary The ocean absorbs carbon from the atmosphere, which slows climate 
change. In order to estimate how much carbon the ocean absorbs, we need to know how much is exchanged 
from the atmosphere into the ocean at each location over time. The direct observations required to do this are 
very sparse and in some regions of the ocean, observations have never been made. One approach to fill in the 
gaps is to use machine-learning techniques, which are algorithms that build a relationship for ocean carbon 
based on related satellite observations with global coverage. Another approach is to use computer simulations, 
which use mathematical equations to represent ocean processes. Here, we merge these two innovations 
by blending model output with machine-learning to create a hybrid product: the Lamont Doherty Earth 
Observatory-Hybrid Physics Data (LDEO-HPD). Particularly for the most recent decade, LDEO-HPD agrees 
better with independent observations than other products, indicating promise for the approach.
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this adjustment in our analysis to derive pCO2 (Section 2.1). Due to limited number of ships, routes, and the high 
cost of maintenance, the data retrieved from this observation system remains sparse in space and time. Data are 
concentrated in the Northern Hemisphere (Figures 1a–b1c). Using these data alone, pCO2 cannot be quantified 
at all times and all locations, and thus statistical extrapolations have been performed to create observation-based 
data products (Rödenbeck et al., 2015). The carbon cycle community uses these products along with GOBMs 
(Friedlingstein et al., 2020) to independently estimate CO2 fluxes and, through their analysis and comparison, 
to improve knowledge of the global ocean carbon cycle. We propose an explicit merging of the strengths of 
both approaches in the form of a hybrid observation-based data product that uses pCO2 estimates from multiple 
GOBMs as a prior.

A GOBM is a knowledge-based model that parameterizes the physical, chemical, and biological processes influ-
encing surface ocean pCO2 using a system of coupled differential equations. GOBMs have long been taken as the 
best estimate of the anthropogenic air-sea CO2 flux, and have always been the basis for quantification of the ocean 
carbon sink in the annual Global Carbon Budget published by the Global Carbon Project since 2009 (Friedling-
stein et al., 2020; Le Quéré et al., 2009). Nine GOBMs were used as the basis for the Global Carbon Budget in 
2019 and 2020 (Friedlingstein et al., 2019, 2020). These models are certainly imperfect, with substantial differ-
ences among them and potentially an underestimation of CO2 flux variability, particularly in the Southern Ocean 
(Gloege et al., 2021; Gruber, Landschützer, et al., 2019; Hauck et al., 2020). Regional mean flux biases can also 
be substantial (Fay & McKinley, 2021). However, based on a long history of their application to understanding 
and quantification of air-sea CO2 fluxes, it is a sensible to use GOBMs as a prior estimate upon which data-based 
improvements can be made.

Most observation-based products find a relationship between a suite of datasets and the target variable (ocean 
pCO2) using machine learning algorithms. The statistical relationships of the algorithm are dependent on the 
quantity and quality of SOCAT pCO2 data, driver data, and the skill of the reconstruction algorithm. A recent 
assessment of the SOM-FFN (Landschützer et  al.,  2014) reconstruction indicates high fidelity for the mean 
and seasonality of pCO2-based CO2 flux estimates. However, pCO2 data sparsity (Figures 1a–b1c) limits the 
ability to reconstruct interannual to decadal timescale variations (Gloege et al., 2021). Though the spread across 
the full suite of recently published products is smaller than the spread across the current generation of models 
(McKinley et al., 2020), there remain substantial differences in the timing and amplitude of interannual varia-
bility (Friedlingstein et al., 2020). In a comprehensive evaluation of multiple products, Gregor et al. (2019) find 
comparable skill with respect to independent data in the current generation of products, and suggest that we have 
reached a skill limit for these products that is fundamentally due to data sparsity.

Both GOBMs (Friedlingstein et  al.,  2020; Hauck et  al.,  2020) and observation-based products (Rödenbeck 
et al., 2015) provide approximately global estimates of ocean pCO2 and CO2 flux. The two approaches differ 
significantly in the way they estimate ocean pCO2. GOBMs compute the evolution of physical and biogeo-
chemical processes based on complex systems of coupled differential equations that can only be solved numeri-
cally. Observation-based products do not explicitly incorporate known physics, but instead estimate a non-linear 
relationship between a suite of driver variables (e.g., see Table 2) and ocean pCO2 where these are co-located. 
Global full-coverage driver datasets are then processed through these relationships to estimate global full-cover-
age pCO2. GOBMs and observation-based data products generally agree on the large-scale patterns and long-term 
increase in ocean pCO2 (Landschützer et al., 2014; McKinley et al., 2016, 2020; Tjiputra et al., 2014). GOBMs 
have comparable root mean square errors against SOCAT pCO2 to those in the observation-based products 
when compared over large spatial regions, indicating comparable skill (Gregor et al., 2019; Hauck et al., 2020). 
However, GOBMs are biased high when sub-sampled at SOCAT observation locations (Figure 1d). In some 
models, this global bias is at least partially attributable to the exclusion of the well-established water vapor 
correction (Dickson et al., 2007) in the calculation of atmospheric pCO2 (McKinley et al., 2020).

As noted above, the pCO2 data typically available to train machine learning algorithms are spatially sparse 
(Figures 1a–b1c). Data availability also changes over time (Figures 2a and 2b). This trend in data availability, 
combined with the long-term positive trend in ocean pCO2 (∼33 μatm increase from 1980s to 2010s) has the 
potential to impact the ability of algorithms to represent the data. Machine learning, or any statistical fit, performs 
best when target variables distributions have the same shape as the driver variables (Goodfellow et al., 2016). With 
ocean pCO2 as the target variable, the algorithm is being asked to predict a broad and right-skewed distribution 
(Figure 2a) that is unlike the driver variables that do not have a significant trend across time. For other products, 
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the temporal trend of pCO2 is addressed by including atmospheric pCO2 as a predictor variable. We note that 
the difference between observed and GOBM-estimated pCO2 has only a modest long-term trend (∼9 μatm from 
1980s to 2010s, Figures 2c and 2d). Thus, if we use the difference between SOCAT observations and the GOBMs 
as a basis for algorithm development, we largely address the aforementioned concern. In other words, with 
model-data misfit as our target variable, the skewness of the target variable is substantially reduced (Figure 2c).

In this study, we leverage the nine GOBMs used in the Global Carbon Budget 2020 (Friedlingstein et al., 2020) 
and combine them with a supervised machine learning algorithm to create the Lamont Doherty Earth Observa-
tory-Hybrid Physics Data ocean pCO2 observation-based product (LDEO-HPD). Instead of using ocean pCO2 
as the target variable, as do other data products (Denvil-Sommer et al., 2019; Gregor et al., 2019; Landschützer 
et al., 2014; Rödenbeck et al., 2015), the target variable for our eXtreme Gradient Boosting (XGB) algorithm is 
the misfit between SOCAT observed pCO2 and each model where SOCAT observations exist in space and time 
(pCO2,SOCAT − pCO2,GOBM). Our driver data are the same suite of in situ and satellite observations used by other 
approaches (see Table 2). To make final estimates of actual ocean pCO2, the XGB algorithm first uses full-field 
observed driver data to predict model misfit at all locations for each GOBM. These misfit fields are then added 
back to each GOBM to make the final estimate. Each GOBM is processed using a unique algorithm, and the final 
LDEO-HPD output is the average of the nine merged data-model estimates. See Figure 3 for a schematic. Our 
approach of combining data-based machine learning with the physics embodied in dynamical models follows on 
recent innovations in physics-guided machine learning (Karpatne et al., 2017; Reichstein et al., 2019) and the use 
of machine learning to correct dynamical models (Watt-Meyer et al., 2021) for earth science applications.

A potential additional application of the approach we develop here is to use model-data misfit fields to visualize 
and quantify errors in GOBM carbon cycle simulations at broader temporal and spatial scales than is currently 
possible with actual SOCAT data (Hauck et al., 2020). Spatio-temporal misfit mapped by the algorithm is a direct 

Figure 1. (a) Total number of months over 1982–2018 with observations. (b) Number of unique months with observations. (c) Long-term mean pCO2 at each 1° × 1° 
pixel. (d) Bias between Surface Ocean CO2 ATlas and mean of nine global ocean biogeochemical models.
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estimate of GOBM skill for locations where in situ data do not exist. We 
briefly explore this application in Section 3.1.

2. Methods
GOBM output is incorporated into a supervised machine learning algorithm 
to create a hybrid data product for 1982–2018. We use gradient boosting as 
implemented in the XGB library (Chen & Guestrin,  2016). XGB learns a 
non-linear relationship between a suite of features and the misfit between 
the GOBM and direct SOCAT observations. We use this approach to upscale 
SOCAT pCO2 observations and create a nearly global, temporally complete 
data product. The upscaled pCO2 product is statistically evaluated against 
independent observations and other published data products. A schematic of 
LDEO-HPD is shown in Figure 3. From pCO2 estimated with LDEO-HPD, 
we estimate CO2 flux using the standard bulk parameterization that relates 
the flux to wind speed (Fay et al., 2021; Wanninkhof, 1992, 2014).

2.1. Pre-Processing SOCAT Observations

We use surface ocean pCO2 calculated from the SOCAT v2019 monthly gridded fCO2 product. SOCAT v2019 is 
a quality-controlled data set that contains observations of surface ocean fCO2, which is converted to pCO2 with 
Equation 1,

pCO2 = fCO2 ⋅ exp
(

𝑃𝑃
surf

atm
⋅

𝐵𝐵 + 2𝛿𝛿

𝑅𝑅 ⋅ 𝑇𝑇

)−1 (1)

where 𝐴𝐴 𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 is the atmospheric surface pressure from ECMWF Reanalysis version 5, T is the sea surface temper-

ature (SST) in Kelvin from National Oceanic and Atmospheric Administration (NOAA) optimally interpolated 
SST version 2 (OISSTv2), B and δ are virial coefficients from Weiss  (1974), R is the gas constant (Dickson 
et al., 2007).

2.2. Global Ocean Biogeochemical Models

As a first guess for ocean pCO2, we use output from nine GOBMs (Table 1) which participated in the Global 
Carbon Budget 2020 (Friedlingstein et al., 2020), with the final year being 2018. Meteorological reanalysis and 
atmospheric CO2 are used to force each model (Hauck et al., 2020). Each GOBM parameterizes the physical, 
chemical, and biological processes influencing surface ocean pCO2 using a system of coupled differential equa-
tions. The surface pCO2 from each GOBM is bi-linearly interpolated from the native model grid to a 1° × 1° 
monthly resolution to be consistent with SOCAT gridded observations (Sabine et al., 2013).

2.3. Machine Learning Method and the LDEO-HPD Product

XGB (Chen & Guestrin, 2016) is a supervised machine learning algorithm where multiple features, X, are used to 
predict a target variable y. The XGB algorithm can then be used to estimate a function, f(X), such that: y ≈ f(X). 
The algorithm begins with an initial guess for y, a choice to which the algorithm is not sensitive. As illustrated 
in Figure 3b, a decision tree is used to learn the difference between the training data and the initial guess. This 
new tree is added to the initial guess. This process of adding trees to correct the errors made in the summation of 
previous trees is repeated until either a predefined number of trees has been made, or when adding an additional 
tree results in no further improvement. Improvements are marginal if there are more than about 1,000 predefined 
trees. A significantly lower number of predefined trees renders the method more sensitive. The final prediction is 
the sum of all trees such that the closest fit of input data and algorithm output is achieved. A mean-squared-error 
(MSE) loss function is minimized using gradient descent.

Gradient boosting algorithm, as implemented in the XGB library version 0.9 with the scikit-learn wrapper (Chen 
& Guestrin,  2016), is used to find a non-linear relationship between a suite of input features and the misfit 

Global ocean biogeochemical models (GOBMs) Reference

NEMO-PlankTOM5 Buitenhuis et al. (2013)

MICOM-HAMOCC (NorESM1-OCv1.2) Schwinger et al. (2016)

MPIOM-HAMOCC6 (MPI) Paulsen et al. (2017)

NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)

CISRO Law et al. (2017)

FESCOM-1.4-REcoM2 Hauck et al. (2020)

MOM6-COBALT (princeton) Adcroft et al. (2019)

CESCM-ETHZ Doney et al. (2009)

NEMO-PISCES (IPSL) Aumont et al. (2015)

Table 1 
Reference for GOBMs Used in the Global Carbon Budget 2020 
(Friedlingstein et al., 2020)
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between each GOBM and SOCAT pCO2: (pCO2,SOCAT  −  pCO2,GOBM). This algorithm was chosen because it 
leads to a better fit to input data than the other options considered, neural network or random forest (Stamell 
et al., 2020). To estimate pCO2 at each spatial location, the algorithm relies on datasets with full, or approximately 
full, global coverage (Table 2): SST and Surface Chlorophyll-a (Chl-a) from satellite; Sea Surface Salinity (SSS) 
from a compilation of in-situ data sources (See Good et al., 2013 for a discussion of the data sources); Mixed 
layer depth (MLD) climatology from Argo floats; and atmospheric CO2 mixing ratio (xCO2) from station sites. 
These variables serve as proxies for known processes affecting pCO2. Solubility is set by SSS and SST. Biologi-
cal uptake of dissolved inorganic carbon (DIC) is indicated by Chl-a. Biological productivity and entrainment of 
DIC are influenced by MLDs. The long-term growth of ocean pCO2 is driven by atmospheric xCO2. Additional 
annual mean anomaly features are derived for SST and Chl-a by subtracting the annual mean from each year. 
These features help the algorithm learn more complex relationships and capture intra-annual variability. N-vector 
transformation (Gade, 2010; Gregor et al., 2017; Sasse et al., 2013) of latitude and longitude is included to help 
the algorithm learn spatial relationships. Although latitude and longitude do not have a direct mechanistic link 
to pCO2, they are found to improve the reconstruction. This is attributable to these variables being proxies for 
biogeographic properties that structure pCO2 fields (Fay & McKinley, 2013, 2017). Time transformation of the 
day of year constrains seasonality.

The features and associated pCO2 misfit are split into three sets: validation, training, and testing. The test set is 
chosen as seven randomly selected years (1984, 1987, 1992, 1999, 2002, 2005, and 2014), these years account 
for about 16% of the data; thus we reserve approximately 20% of data for testing, as is standard in machine 
learning applications. The withheld test set is used to evaluate performance on a completely independent data set, 
individual years are withheld for the test set to retain individual ship tracks and increase the independence of test 
data from training and validation data (Gregor et al., 2019). The remaining data is randomly split between the 
validation and training set. The validation set, which accounts for 20% of the remaining data, is used to optimize 
the algorithms hyperparameters. The hyperparameters define the architecture of decision trees used in the model. 
The remaining data defines the training set, which is used to construct the decision trees (Gregor et al., 2019).

Group: product Variable Abbreviation Processing

SOCATv2019 a Partial pressure of ocean CO2 pCO2 See Section 2.1

NOAA:OISSTv2 b Sea Surface Temperature SST -

SST seasonal anomaly SST’ SST - annual average

Sea Ice Fraction ICE -

Met Office:EN4 c Sea Surface Salinity SSS -

NOAA:GLOBALVIEW d Atmospheric CO2 mixing ratio xCO2 -

DeBoyer:Mixed Layer Depth e Mixed Layer Depth MLD log10(MLD)

ESA:GlobColour f Chlorophyll-a Chl a log10(Chla)

Chl a seasonal anomaly Chl a’ chl a - annual average

- Day of year J1 𝐴𝐴 sin
(

𝑗𝑗∗2𝜋𝜋

365

)

J2 𝐴𝐴 cos
(

𝑗𝑗∗2𝜋𝜋

365

)

- n-vector A 𝐴𝐴 sin (𝜆𝜆)

B 𝐴𝐴 sin (𝜇𝜇) cos (𝜆𝜆)

C 𝐴𝐴 − cos (𝜇𝜇) cos (𝜆𝜆)

Note. Data processing is described in the text. Symbol next to each product identifies the source.
 aReference: Bakker et al. (2016) Source: https://www.socat.info/.  bReference: Reynolds et al. (2002) Source: https://www.
esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.  cReference: Good et al. (2013) Source: https://www.metoffice.gov.
uk/hadobs/en4/.  dReference: Conway et al. (1994) Source: https://gml.noaa.gov/ccgg/mbl/.  eReference: de Boyer Montégut 
et  al.  (2004) Source: http://www.ifremer.fr/cerweb/deboyer/mld/home.php.  f  Reference: Maritorena et  al.  (2010) Source: 
http://www.globcolour.info/.

Table 2 
Summary of the Products, Variables, and Data Processing Steps Used for Feature and Target Variables
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Our XGB algorithm uses 1,500 decision trees each with a max depth of nine levels or until no further splits to the 
samples in that node are possible. Each new tree uses 95% of the features and a random subsample of 85% of the 
observations from the training set with replacement. The weight of each sequential tree is reduced by 5%. Light 
L1 regularization was applied to control overfitting and loss is measured using MSE.

XGB is used to estimate spatio-temporal estimates of the misfit for each of nine GOBMs. Misfit estimates at all 
locations in space and time are added back to the original GOBM to correct the GOBM toward the data. This 
process is repeated for each of the nine GOBMs. The final result is then the average of all nine predictions. A 
schematic of HPD is shown in Figure 3.

2.4. Independent Data Sets

Observations not included in the SOCAT database are used to validate the method (Table 3). These datasets 
include the Lamont-Doherty Earth Observatory (LDEO) database, with SOCAT data removed; and GLobal 
Ocean Data Analysis Project version 2 (GLODAPv2). Two time series sites are also used for validation: Bermuda 
Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT). In these datasets, pCO2 is either 

Figure 2. (a) Histogram of Surface Ocean CO2 ATlas (SOCAT) pCO2 observations in 1980s, 1990s, 2000s and 2010s shown by different shades of gray. Dotted line 
indicates mean pCO2. (b) Boxplot of observations for each decade. Whisker indicates 1.5*IQR, observations outside the whisker have been omitted. White line indicates 
the mean and the number inside in the box indicates the number of observations within that decade. (c) Histogram of the difference between CESM model and SOCAT 
and (d) is the corresponding boxplot. Due to different internal model structures, the long-term trend from 1980s to 2010s varies from −7 μatm to +9 μatm.
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directly measured or inferred from observations using carbonate system calculations with inputs of DIC and 
Total Alkalinity (TA). No data from GLODAPv2, BATS, or HOT are in the SOCAT database since pCO2 is not 
directly measured at these sites, but instead is derived from DIC and TA. The cbsyst package (Hain et al., 2015) 
is used for carbonate system calculations. For decadal comparisons, timeframes are 1990s (1990–1999), 2000s 
(2000–2009) and 2010s (2010–2018).

The uncertainty in derived pCO2 is dependent on the accuracy of the input measurements. For the modern 
ocean, cbsyst calculations are consistent with the constants of Lueker et al. (2000), and result in a 1.9% standard 
deviation in pCO2 when DIC and TA uncertainties are 2.0 and 4.0 mol kg −1, respectively. However, pCO2 at 

Figure 3. (a) Schematic of Lamont Doherty Earth Observatory-Hybrid Physics Data method. A relationship between a suite 
of auxiliary features and the model data misfit is learned via the eXtreme Gradient Boosting (XGB) algorithm. Spatio-
temporal errors are then added back to the model's pCO2 field to create the final product. (b) Outlines the XGB algorithm, 
where decision trees are sequentially added to improve the mistakes of the previous trees. Each additional tree reduces 
the loss and improves the overall performance of the algorithm. (c) The final estimate of pCO2 is the model-data misfit 
estimated at all global points plus the original model. This process is done independently for each of the nine global ocean 
biogeochemical models and the final estimate is the average pCO2.

Data set Accuracy (μatm) Grid points Reference

LDEO database version 2018 a ±2.5 μatm 16 ,161 Takahashi et al. (2019)

GLODAPv2 b >12 ���� at 400 μatm 5,976 Olsen et al. (2019)

BATS b 4 μatm at 400 μatm 246 Bates (2007)

HOT b <7.6 ���� at 400 μatm 214 Dore et al. (2009)

 apCO2 measured with pCO2 equilibrator.  bpCO2 estimated from DIC and TA.

Table 3 
Validation Datasets, Accuracy of pCO2, and Total Number of 1° × 1° Grid Points Is Shown for Each Data Set
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temperatures below 8°C may be underestimated using the Lueker et al. (2000) constants (Sulpis et al., 2020). For 
GLODAP, Bockmon and Dickson (2015) suggests an uncertainty of 5𝐴𝐴

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

𝑘𝑘𝑘𝑘
 for DIC and TA, thus suggesting an 

uncertainty greater than 1.9%. Gregor et al. (2019) estimate the uncertainty of GLODAP pCO2 to be 𝐴𝐴 𝐴 12 μatm 
at 400  μatm. Although the measurements have high uncertainty, given the sparsity of the SOCAT database, 
including GLODAP as a validation data set outweighs its omission, consistent with previous studies (Gregor 
et al., 2019; Gregor & Gruber, 2021). At BATS the uncertainty is about 4 μatm (Bates, 2007) while at HOT it is 

𝐴𝐴 𝐴 7.6 μatm (Dore et al., 2009). LDEO pCO2 has uncertainty of 2.5 μatm (Takahashi et al., 2019).

2.5. Regression Metrics

A suite of regression metrics are used to compare the predictions (P) to the observations (O; Stow et al., 2009). 
Metrics considered include correlation (r), bias, and root mean squared error (RMSE). Multiple metrics are 
considered in order to provide a thorough appraisal of each method. Metrics are displayed in a Taylor diagram 
(Taylor, 2001).

Pearson correlation coefficient (r) measures the tendency of the predicted and observations to vary together, 
bounded between, −1 < r < 1, with values near 1 indicating that they vary together and −1 indicating an inverse 
relationship. Correlation is also a measure of how well the phase is captured. Values near 1 and −1 indicate 
that the predictions and observations are perfectly in or out of phase, respectively. Intermediate values indicate 
a phase shift between the two signals, with values closer to zero indicating a larger phase shift between signals. 
The squared correlation r 2, or coefficient of determination, represents the variance explained by the regression. 
Correlation is defined as the covariance between predictions and observations divided by the product of their 
standard deviations, 𝐴𝐴 𝐴𝐴 =

cov(𝑃𝑃 𝑃𝑃𝑃)

𝜎𝜎𝑃𝑃 𝜎𝜎𝑃𝑃

 , σP and σO represent the standard deviation of the predictions and observations, 
respectively.

Bias, average absolute error (AAE), and RMSE each measure the size of discrepancies, with values near zero indi-
cating a close match between predictions and observations. However, each metric has strengths and weaknesses. 
Bias is simply calculated as the long-term mean difference between predictions and observations (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃 − 𝑂𝑂 ), 
where overbars represent the temporal mean. Positive and negative bias values indicate predictions that are gener-
ally overestimated and underestimated respectively. Thus, bias provides a measure of the direction of discrepancy. 
However, bias values falling close to zero can be misleading with significant positive offsets at one point in space 

or time canceling out significant negative offsets elsewhere. RMSE = 𝐴𝐴

√

(𝑃𝑃 − 𝑂𝑂)2 measures of the magnitude of 
discrepancy, but squaring the misfit makes RMSE sensitive to outliers. Alternatively, AAE = 𝐴𝐴 |𝑃𝑃 − 𝑂𝑂| treats each 
misfit equally, but is a less commonly used metric. We report bias, AAE and RMSE since each one provides a 
different insight into the goodness-of-fit.

2.6. Area Coverage

The LDEO-HPD product covers 89.6% of the total ocean area, leaving out the Arctic and coastal zones. Before 
estimating the net carbon flux from observation-based products, we use the method of Fay et al. (2021) to fill 
spatial gaps in the pCO2 product with climatology (Landschützer, Laruelle, et al., 2020) plus the global-mean 
trend. This fills in the 10.4% to create a global gap-free product. Climatological filling lowers global mean pCO2 
from 356 to 352 μatm in the final product. This climatological filling technique (Fay et al., 2021) was also applied 
to each observational data product to which we compare our results (Table 5).

2.7. Air-Sea CO2 Flux

The air-sea CO2 exchange was calculated using a bulk parameterization (Equation 2):

𝐹𝐹𝐶𝐶𝐶𝐶2
= 𝑘𝑘𝑤𝑤𝑆𝑆𝐶𝐶𝐶𝐶2

(1 − 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖)(𝑝𝑝𝐶𝐶𝐶𝐶
𝑎𝑎𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚𝑎𝑎
2

− 𝑝𝑝𝐶𝐶𝐶𝐶
𝑚𝑚𝑖𝑖𝑖𝑖𝑎𝑎𝑜𝑜

2
) (2)

which parameterizes the air-sea CO2 flux (𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶2
 ) as a function of the gas transfer velocity (kw), CO2 solubility 

(𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶2
 ), ice fraction (fice), and partial pressure of CO2 in moist air (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎
2

 ) and surface ocean (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

2
 ). 
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Solubility is calculated following Weiss (1974) and partial pressure of moist 
air (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎
2

 ) is calculated following Equation 3,

𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎
2

= 𝑥𝑥𝑝𝑝𝑝𝑝2(𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑝𝑝2𝑝𝑝) (3)

where xCO2 is the dry air mixing ratio of atmospheric CO2, Patm is the total 
atmospheric pressure, and pH20 is the saturation vapor pressure (Dickson 
et al., 2007). We use the Wanninkhof (1992) formulation for the gas transfer 
velocity (Equation 4):

𝑘𝑘𝑤𝑤 = 𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑢𝑢
2
(

𝑆𝑆𝑤𝑤

660

)−0.5

 (4)

which parameterizes kw as a function of wind speed squared (u 2) and the 
Schmidt number (Sc). kw is scaled by a factor of kw,scaled for each wind prod-

uct to match the invasion of bomb  14C (343 ± 40 × 10 26 atoms  14C as of 1994, see Sweeney et al., 2007) (Fay 
et al., 2021). Three wind products were used (Table 4). Flux was calculated separately for each wind product and 
then averaged to create the final best estimate.

pCO2 measured in situ and compiled in the SOCAT database is set by the combination of the anthropogenic and 
natural background carbon cycles. Thus, the calculated flux is the net, or contemporary, flux (FNET).

2.8. Estimating Anthropogenic Carbon Flux From the Net Flux

The net CO2 flux is the sum of an anthropogenic and a natural component (FNET = FNAT + FANT). Surface ocean 
pCO2 quantifies FNET, while interior ocean data quantify FANT. Closure terms are required to compare these inde-
pendent quantifications of the ocean carbon sink.

The dominant net air-sea flux due to the natural carbon cycle is the slow outgassing of riverine carbon by the 
ocean (Aumont et al., 2001). The community's estimate of the net riverine-induced carbon outgassing (FRIV) is 
still evolving. Here we use an average of three estimates representing the spread of the available approaches: a 
geochemical budgeting perspective (+0.45 ± 0.18 PgC/yr; Jacobson et al., 2007), a meridional heat constraint 
approach (+0.78  ±  0.41  PgC/yr; Resplandy et  al.,  2018), and a process-based ocean model (+0.23  PgC/yr; 
Lacroix et  al.,  2020). Since no uncertainty is presented for the Lacroix et  al.  (2020) estimate, we assume a 
50% 1σ uncertainty, which is consistent with the relative magnitude of uncertainty for the other two estimates. 
Combining these three estimates, we derive an estimate of carbon efflux due to river inputs to the ocean in the 
observation-based product flux estimates of +0.49 ± 0.26 PgC/yr. This FRIV ≈ FNAT will be removed from FNET 
estimates from HPD and other products to arrive at FANT.

Anthropogenic carbon accumulation can be estimated from interior ocean observations, for which a global survey 
is completed approximately once per decade, and thus this component is estimated over a defined time period. 
Gruber, Clement, et al. (2019) find FANT at −2.6 ± 0.3 PgC/yr for 1994–2007. A changing ocean circulation may 
have modified FNAT over 1994–2007 through a non-steady state outgassing flux of natural carbon. Thus, a natural 
non-steady state flux (FNAT,NS) has been proposed (Gruber, Clement, et al., 2019), that is, FNAT = FNAT,NS + FRIV. 
Applying the transient steady state assumption to FNET from one observation-based product (Landschützer 
et al., 2016), Gruber, Clement, et al.  (2019) find FNAT,NS = +0.38 PgC/yr. However, the transient steady state 
assumption is known to hold when atmospheric carbon accumulation is exponential, and this has not been the 
case in recent decades (Raupach et al., 2014; Ridge & McKinley, 2020). This estimate of FNAT,NS is likely an upper 
bound. Nevertheless, we follow Gruber, Clement, et al. (2019) and adjust their FANT estimate by this amount.

Adjusting the FANT estimate of Gruber, Clement, et al. (2019) leads to FANT + FNAT,NS = −2.2 ± 0.3 PgC/yr for 
1994–2007. Earlier, for the IPCC AR4, Denman et al.  (2007) synthesized multiple estimates from ocean and 
atmosphere tracer studies to estimate FANT = −2.2 ± 0.4 PgC/yr for 1990–1999, and without any adjustment 
for FNAT,NS. We compare estimates of FNET–FRIV from LDEO-HPD and other observation-based products (see 
Section 2.9) to these estimates.

Wind speed product Reference

CCMPv2.0 a Mears et al. (2019)

ERA5 b Hersbach et al. (2020)

JRA-55 c Harada et al. (2016)

 aSource: http://www.remss.com/measurements/ccmp/.  bSource: https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.  cSource: https://jra.
kishou.go.jp/JRA-55/.

Table 4 
Wind Speed Products Used to Calculate CO2 Flux
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2.9. Observational-Based Products

We compare the pCO2 error statistics and CO2 flux estimates to four products that extrapolate from SOCAT data 
to global coverage using machine learning or other statistical modeling techniques (Table 5).

3. Results
With LDEO-HPD, an XGB algorithm estimates time-varying maps of model-data misfit, and these misfits are 
then used to adjust model fields to arrive at an estimate of the real-world pCO2, from which CO2 flux is then 
calculated. By identifying large-scale patterns of model mismatch with observations (Section  3.1), LDEO-
HPD approach reconstructs real-world pCO2 with greater fidelity than other recently published approaches 
(Section 3.2). After correcting for riverine outgassing, air-sea CO2 flux estimates from LDEO-HPD are consistent 
with independent observations for both 1990–1999 and 1994–2007 (Section 3.3).

3.1. Model-Data Misfit

The 9-model, global-mean bias of 10 μatm in ocean pCO2 (Figure 1d) can partially be attributed to neglecting to 
account for the water vapor correction when calculating the atmospheric pCO2 that forces the model (Dickson 
et al., 2007). If the molar concentration of CO2 is measured in dry air then, by standard protocol (Orr et al., 2017), 
the atmospheric partial pressure of CO2 must be reduced by the vapor pressure of water (Equation 3). This is typi-
cally a small percentage correction, but still a change in the pressure field of only 3% changes the partial pressure 
of CO2 by about 10 μatm. Thus, if the water vapor correction is ignored, the partial pressure of CO2 in the atmos-
phere that the ocean model experiences will be too high and ocean pCO2 will also be high. Of the nine models, 
three do not account for this correction, and the other six do (Friedlingstein et al., 2020). Hauck et al. (2020) 
illustrate through comparison to SOCAT data that these models have a significant high bias in pCO2. In addition, 
they show that several models that do include the water vapor correction also have a high pCO2 bias, but do not 
identify the source of this error. The mean pCO2 bias of +10 μatm that we find (Figure 1d) is thus partially, but 
not fully, attributable to several models not applying the water vapor correction.

The model corrections solved for by the XGB algorithm has significant spatial structure, and thus is doing far 
more than just addressing a global-mean bias in the GOBM priors. This is illustrated for two of the nine models 
in Figure 4. There are distinct patterns and consistent seasonality in the required corrections. For the MPI model, 
in the Southern Ocean and North Pacific, pCO2 is far too high in winter (JJA) and far to low in summer (DJF), 
thus the XGB algorithm imposes strong negative and positive corrections, respectively. In the North Atlantic, 
however, winter is too low and summer is too high, requiring the opposite sign of corrections. In the subtropics, 
MPI requires a strong negative correction. For CNRM, these patterns are different, with the whole of the winter 
hemisphere generally being slightly too low in pCO2 and the majority of the summer hemisphere being too high 
in pCO2, requiring modest positive and negative correction, respectively. Both models require a positive correc-
tion in the equatorial Pacific. Zonal-average misfits (Figure 4b) indicate that both of these models require the 
same sign and comparable magnitude seasonal correction in the extratropical Northern Hemisphere, while MPI 
requires much larger corrections in the Southern Ocean.

Observation-based pCO2 product Reference

MPI-SOMFFN Landschützer et al. (2014); Landschützer, Gruber, et al. (2020)

JENA-MLS Rödenbeck et al. (2014)

CMEMS Denvil-Sommer et al. (2019)

CSIR Gregor et al. (2019)

Table 5 
Observational Data Products for Comparison to These Results
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3.2. Evaluation of LDEO-HPD Against Independent Datasets

At the ocean timeseries sites at Bermuda (BATS) and Hawaii (HOT), LDEO-HPD compares quite favorably to 
the observations. The amplitude of seasonal and interannual variability in LDEO-HPD is as observed at HOT 
(Figures 5b and 6a) and slightly underestimated at BATS (Figures 5c and 6b), and the trends at both timeseries 
are well-represented. Compared to existing pCO2 gap-filling methods, LDEO-HPD performs slightly better at 
BATS and HOT, with the lowest unbiased-RMSE relative to SOMFFN, MLS, and CMEMS (Figures 6a and 6b). 
Correlations are high at HOT and BATS because of the pronounced subtropical seasonality captured in the 
datasets. All these products are reliably able to capture subtropical seasonality (Gloege et al., 2021; Rödenbeck 
et al., 2015; Stamell et al., 2020).

LDEO and GLODAP are global observation datasets from intermittent ship transects. In these data, seasonality 
is less well-resolved, a fact that helps to explain the lower correlations of all products to the data relative to BATS 
and HOT. All the products show similar performance on LDEO observations, with all the products underestimat-
ing the variability (Figure 6c). For comparison to GLODAP, LDEO-HPD has a smaller unbiased-RMSE relative 
to other products (Figure 6d). LDEO-HPD and MLS capture the amplitude of variability in GLODAP equally 
well, and slightly better than SOMFFN and CMEMS.

Figure 4. (a) Average pCO2 misfit in the MPI and CNRM model for all years, December, January, and February (DJF); 
March, April and May (MAM); June, July, and August (JJA); and September October and November (SON). (b) Zonally 
average pCO2 misfit in the MPI and CNRM models for DJF, JJA, MAM, and SON.
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Over time, the skill of LDEO-HPD against independent observations of LDEO and GLODAP increases relative 
to the other methods. In the 1990s, the skill of all methods are indistinguishable (Figure 7, left). In the 2000s, 
comparison to GLODAP indicates that LDEO-HPD is slightly better than the others, though there is no distinc-
tion across the methods for LDEO (Figure 7, center). In the 2010s, LDEO-HPD clearly does the best job at 
capturing GLODAP, and is slightly improved against LDEO (Figure 7, right). Thus, we attribute the improved 
overall fit to independent observations (Figure 6) to the better fit in the later decades (Figure 7).

3.3. CO2 Fluxes: 1982–2018

Mean pCO2 and CO2 flux from LDEO-HPD algorithm for 1982–2018 show well known features. Elevated pCO2 
is observed at the equator (Figure 8a), especially in the east-equatorial Pacific. This elevated pCO2 is the result of 
upwelling of cold, carbon laden waters. The surface pCO2 in this region is greater than the atmosphere, resulting 
in net CO2 flux from the ocean to the atmosphere (Figure 8b).

Over time, the net global CO2 flux has become increasingly negative (Table 6), that is, the ocean has become 
a greater net carbon sink over the recent decades as atmospheric pCO2 has risen. Coastal filling (Section 2.6) 
increases uptake by nearly 0.1–0.2 PgC/yr, consistent with past estimates of globally integrated coastal uptake 
(Roobaert et al., 2019).

Applying the same to the calculation of air-sea CO2 fluxes for all products (Section 2.7), and applying the FRIV 
correction, we find that fluxes estimated by LDEO-HPD are within the range of the other products for Fant 
(Figure 9a). Independent flux estimates based on interior data or atmospheric constraints also indicate consist-

Figure 5. (a) Locations of independent datasets. Bermuda Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT) are timeseries, while the 
GLODAP and Lamont-Doherty Earth Observatory are spatially varying. (b) Comparison of HOT with Lamont Doherty Earth Observatory-Hybrid Physics Data 
(LDEO-HPD) output. (c) comparison between BATS and LDEO-HPD output.
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ency. Compared to FANT for 1990–1999 (Denman et al., 2007) and FANT + FNAT,NS 1994–2007 (Gruber, Clement, 
et al., 2019), all products are within the uncertainty bounds (Figure 9b).

Improved comparison to independent data in LDEO-HPD is consistent with the reduced skewness of the target 
variable distribution (Figure 2). Reduced skewness should particularly improve predictions at the tails of the 
distribution, which in this case are the decades of the 1980s and 2010s. We do not have sufficient independent 
data to make comparisons in the 1980s, but HPD performs best of all methods in the 2010s (Figure 7, Table 7).

4. Discussion
We show that incorporating physical models into machine learning algorithms results in some improvement in 
predictions of surface ocean pCO2. Using output from GOBMs as a prior guess allows us to reduce the skewness of 
the target variable distribution (Figure 2). Though GOBMs are imperfect representations of the real ocean (Hauck 

Figure 6. Taylor diagrams display the performance of published gap-filling techniques and Lamont Doherty Earth Observatory-Hybrid Physics Data (LDEO-HPD) 
product. Performance is evaluated at two timeseries: (a) Hawaii Ocean Time-series (HOT) and (b) Bermuda Atlantic Time-series Study (BATS); and two global 
datasets: (c) Lamont Doherty Earth Observatory and (d) GLODAP. Red star indicates standard deviation of each data set.
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Figure 7. Taylor diagrams display the performance of published gap-filling techniques and Lamont Doherty Earth Observatory-Hybrid Physics Data (LDEO-HPD) 
product. Performance is evaluated at two global data sets, Lamont Doherty Earth Observatory and GLODAP, using data from 1990 to 1999 (1990s), 2000–2009 
(2000s), and 2010–2018 (2010s). Red star indicates standard deviation of each data set.

Figure 8. Mean (a) pCO2 and (b) net CO2 flux over 1982–2018 estimated from Lamont Doherty Earth Observatory-Hybrid Physics Data (LDEO-HPD). A spatially 
complete map of CO2 flux is achieved by filling in gaps with a trend plus climatology.
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et al., 2020), this work illustrates that they can provide useful prior estimates 
of pCO2 upon which data can improve using machine learning algorithms. By 
merging models and data, LDEO-HPD reduces error in estimates of pCO2 
(Figure 6), with the recent decades being the most improved (Figure 7, Table 7).

The LDEO-HPD approach of correcting GOBMs estimates the misfit between 
model output and observed pCO2 at all points in space and time (Figure 3). 
The seasonality of model-data misfits (Figure 4) indicate that the LDEO-HPD 
is correcting for errors in model representation of seasonal physical and bioge-
ochemical processes, such as mixed layer deepening and biological processes. 
These machine-learning derived maps of model-data misfit could be applied 
as a diagnostic of model performance to offer a larger-scale perspective that 

Unfilled Filled

1982–1990 −1.38 −1.53

1990–2000 −1.48 −1.65

2000–2010 −1.49 −1.69

2010–2018 −1.96 −2.23

Table 6 
Net CO2 Flux (FNET) (PgC/yr) From LDEO-HPD Across Decades Without 
Coastal Filling (“Unfilled”) and Filled With the Climatology (Section 2.6)

Figure 9. (a) Anthropogenic air-sea CO2 exchange (FANT) for 1985–2018 from Lamont Doherty Earth Observatory-Hybrid 
Physics Data (LDEO-HPD) and four other products: SOMFFN, MLS, CMEMS, CSIR-ML6. Positive is to the atmosphere. 
Gray dash is the mean of the nine Global Ocean Biochemical Model (GOBM) priors, which are also the basis for the ocean 
sink estimate of the Global Carbon Budget 2020 (Friedlingstein et al., 2020). (b) Anthropogenic CO2 flux for 1990–1999, 
1994–2007, and 2009–2018. Light gray bar indicates IPCC AR4 or interior observation-based estimates with uncertainty. 
Dark gray bar is the mean of the nine GOBMs. Colored bars indicate observation-based estimates. The white line separates 
FNET from the products and FRIV, estimated as the average of three estimates (0.49 PgC/yr), see Section 2.8. Thin lines 
indicate uncertainty; product uncertainty is estimated to be 0.6 PgC/yr, see Section 4.



Journal of Advances in Modeling Earth Systems

GLOEGE ET AL.

10.1029/2021MS002620

16 of 19

complements direct comparison to in situ data (Hauck et al., 2020). Model 
development could be supported with this approach to model-data comparison.

LDEO-HPD indicates an ocean carbon sink that is on the upper end of the 
suite of products for 1990–1999, but at the lower end of the suite of products 
for 2009–2018 (Figure 9). This may be due to reduced skewness in the target 
variable in this approach. The observed pCO2 distribution is centered some-
where between the 1990s and 2000s (Figures 2a and 2b). The pCO2 observed 
in the 1980s and 1990s is lower than this long-term mean pCO2 due to the long-
term increase of surface ocean pCO2 in response to atmospheric pCO2 growth, 
similarly the pCO2 of the 2000s and 2010s is higher. This has the potential to 
skew pCO2 predictions from machine learning algorithms in the 1980s and 
1990s slightly high, and in the 2000s and 2010s slightly low, in both cases 
toward the mean of the overall distribution. This effect could help to explain 
the positive pCO2 bias between 1982 and 1993 in the reconstruction of Gregor 
et al. (2019). Since LDEO-HPD has a reduced skewness in its target variable 

(Figures 2c and 2d), this potential issue should be minimized. Nevertheless, it is important to note that Landschützer 
et al. (2014) do not find a temporal trend in RMSE or bias for their product over 14 years (1998–2011). Yet, this is 
half the number of years as considered here, and any impact of skewness should increase with longer timeseries.

Machine learning algorithms are based on the assumption that training and testing data are independent and 
identically distributed and thus drawn from the same data generating distribution (Goodfellow et al., 2016). A 
tighter distribution, such as when the mean is not shifting over time, should be easier for a statistical algorithm to 
fit. By LDEO-HPD fitting model-data misfit, the skewness of the target variable distribution is largely eliminated 
(Figures 2c and 2d). This reduction of skewness in LDEO-HPD (Figures 2a and 2b) is consistent with both the 
improved fit to independent pCO2 observations, particularly in later years (Figure 7, Table 7) and with the slightly 
larger ocean carbon sink LDEO-HPD in the 1990s and the slightly smaller sink since 2009 (Figure 9).

Here, we provide hints that temporal skewness of the pCO2 training data may be impacting the current suite of 
observation-based products and LDEO-HPD's comparison to them. However, we do not prove this a significant 
issue. A comprehensive assessment is clearly needed, particularly in light of the strongly increasing product-based 
ocean carbon sink estimates since 2005 that increasingly diverge from models (Friedlingstein et al., 2020; Hauck 
et al., 2020) If the ocean sink is, in fact, growing much more rapidly than currently estimated by the Global 
Carbon Budget, this would imply much smaller trends must be occurring in carbon uptake by the land biosphere. 
A comprehensive study of this issue for the ocean products could be facilitated by tools such as the Large Ensem-
ble Testbed (Gloege et al., 2021).

The combination of data-based machine learning with specific physical constraints or with the physics embod-
ied in dynamical models is an emerging concept for earth science applications (Karpatne et al., 2017; Reich-
stein et  al., 2019). As in other efforts that have corrected dynamical models using observations (Watt-Meyer 
et al., 2021), we use GOBMs as a prior estimate of the surface ocean pCO2 field, and then correct these fields with 
data. The fact that the distribution of the target variable is substantially tightened (Figures 2a and 2c) suggests that 
GOBMs bring valuable prior physical information to support a robust reconstruction. For example, where pCO2 
is high, such as in the equatorial Pacific, it is also high in the model; and thus model-data misfits are constrained 
in magnitude (Figure 2c). If the GOBMs did not provide a useful prior, that is, had little relationship to the 
observations, the spread of model-data misfit would be expected to be larger than of pCO2 alone. Tightening the 
distribution of the target variable supports our improved machine learning based predictions (Figures 6 and 7).

Gregor et al. (2019) suggest we may have “hit a wall” in our ability to extrapolate sparse pCO2 data to global 
coverage. Here, we illustrate that incorporating model output and addressing skewness of the target variable 
distribution allows some additional improvement in prediction skill. In addition, LDEO-HPD employs an XGB 
algorithm, which is also found to be promising by Gregor et al. (2019). Stamell et al. (2020) showed the XGB 
algorithm performs slightly better in pCO2 extrapolation than neural network or random forest algorithms. XGB's 
strength is its self-correcting nature in which each additional tree improves upon errors made in the previous.

For 2009–2018, the Global Carbon Budget 2020 (Friedlingstein et al., 2020) indicates an ocean anthropogenic sink 
(FANT) of −2.5 ± 0.6 PgC/yr (Figure 9). LDEO-HPD indicates a similar flux, −2.6 ± 0.6 PgC/yr (FANT = FNET−

1990s 2000s 2010s

LDEO-HPD 22.0 (27.6) 13.8 (19.0) 15.4 (23.4)

SOMFFN 23.3 (28.2) 15.4 (19.9) 16.9 (26.0)

MLS 22.2 (32.7) 16.1 (25.5) 17.7 (31.6)

CMEMS 21.9 (25.8) 16.2 (18.6) 15.9 (24.8)

CSIR 20.8 (28.4) 15.6 (21.2) 15.7 (27.9)

Note. Underlined values indicate the product with the lowest RMSE. LDEO 
values are shown in parenthesis.

Table 7 
RMSE at Independent Datasets Across Decades RMSE in Each Product 
Against GLODAP and LDEO Datasets Across Three Decades: 1990s, 
2000s, and 2010s
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FRIV). The standard deviation across the nine error-corrected GOBMs (0.1 PgC/yr), the uncertainty associated 
with FRIV (0.26 PgC/yr) and a 20% uncertainty from Wanninkhof (2014) associated with the gas transfer velocity 
(0.52 PgC/yr) are added in quadrature to produce the total uncertainty of LDEO-HPD. The other four products 
discussed here (Table 5) have mean uptake of −2.6 ± 0.6 to −2.8 ± 0.6 PgC/yr, using FRIV = +0.49 ± 0.26 PgC/
yr to calculate FANT from FNET for all and including a 20% uncertainty associated with the gas transfer velocity. 
Thus, all products are consistent with the Global Carbon Budget 2020.

It is important to note that our updated estimate of FRIV is lower than that used by the Global Carbon Budget 2020 
(+0.61 PgC/yr), and by Hauck et al. (2020) (+0.78 PgC/yr), thus reducing the apparent model to observation-based 
product discrepancy that has been previously discussed (Friedlingstein et al., 2020). In addition, the harmonized 
flux calculation approach used here slightly reduces ocean uptake for some products (Fay et al., 2021). In summary, 
for 2009–2018, we find that all products fall within the uncertainties of the Global Carbon Budget 2020 for FANT, 
with LDEO-HPD on the lower end of the range and slightly closer to the Global Carbon Budget 2020 mean.

5. Conclusions
To reconstruct the real ocean's surface ocean pCO2, LDEO-HPD rectifies output of nine GOBMs by learning the 
misfit from observed pCO2 using an XGB algorithm and observed driver fields. LDEO-HPD improves predic-
tion accuracy compared to other state-of-the-art pCO2 data products, as indicated by improved fit to independent 
pCO2 data. This suggests that GOBM output adds useful prior information to machine learning for this applica-
tion. In addition, the globally and temporally complete misfits learned by the algorithm additionally have promise 
as a new diagnostic and visualization tool with which GOBM performance can be assessed.

Adding physical information, here by using GOBMs as a prior, and addressing temporal skewness in surface 
ocean pCO2 distribution offer promising directions for continued improvement in the fidelity of machine-learning 
based reconstructions of the ocean carbon sink. The LDEO-HPD suggests a global ocean sink for anthropogenic 
carbon that is within the range of the suite of existing pCO2 observation-based products, and that is in agreement 
with the Global Carbon Budget 2020 (Friedlingstein et al., 2020).

Data Availability Statement
Analysis scripts and LDEO-HPD code is available at https://github.com/lgloege/LDEO-HPD and LDEO-HPD 
output is available at https://zenodo.org/record/4760205.
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